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THE TIME~HISTORY OF A SATELLITE

AROUND AN OBLATE PLANET

M. C. Eckstein', Y. Y. Shi'', and J. Kevorkian '

ABSTRACT

In the previous work on the motion of a close satellite around an oblate
planet, the orbital elements and perturbations have been described as functions
of the central angle between the instantaneous node and the satellite. A
complete theory, however, requires the elements and perturbations as functions
of the time. Therefore the relationship between time and the central angle
between node and satellite is presented here. Although the problem is
mathematically nothing but a quadrature, it is practically quite complicated
because the evaluation of the occurring integral requires some rather lengthy
algebraic manipulations. Part of the calculations are avoided by using a new
technique to numerically evaluate certain coefficients that depend only on

the initial conditions. Furthermore, the energy integral is used to evaluate
certain terms that otherwise would require consideration of higher order terms

in the differential equations.
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1. INTRODUCTION

Eckstein, Shi, and Kevorkian (1964) discussed the geometry of the orbit of a
satellite around an oblate planet. Particular emphasis was given to the
nature of the orbit near "the critical inclination" and to the gquestion of
defining the motion for all inclinations by means of uniform asymptotic
expansions. This paper is a continuation of the mentioned reference and
discusses the time-history of the motion. The notation and definitions of
the cited reference will be used throughout, and equstions shown there will

be referred to by the corresponding number followed by an asterisk.

The solution of the time-history of the motion is formally very simple,
since (cf. (3.5%)) it reduces to a quadrature once the orbit has been
defined. However, the practical problem of exhibiting an explicit analytic
formula for the time, correct to some order, is quite involved for the

following reasons.,

Inclusion of short-period terms in the solution introduces considerable
algebraic complexity in this problem., Struble (1962) neglected these terms
by using an averaged differential equation as a starting point for calculating
the first approximation to the long=-period and secular terms in the time-
history. In this paper all terms in the solution are retained in order to
define the time-history completely to order e. The presence of perturbations
of course eliminates the advantage of using the eccentric anomaly as an
independent variable. Therefore, short-period terms are expressed by their

convergent Fourier series expansions in terms of ¢, the central angle between

the instantaneous node and the radius vector.




In addition to the algebraic complexity of the problem where short-period
terms are included, the inherent difficulty associated with the quadrature
of the equation for dt/d¢ is the presence of long-period terms on the right
hand side. (These are trigonometric terms whose arguments are integer
multiples of €¢.) Since such terms drop in order by one power of e after
integration, it is necessary to consider terms of order €n+l in order to
include all long-period terms of order e® in the solution, Thus, the major
difficulty in deriving the solution for t correct to order € stems from the

presence of certain unknown long-period terms of order 52 in dt/dé¢.

To evaluate these terms would in general require consideration of perturbations
»

of order e3 for the inclination and reciprocal radius, However, in this

particular case it is shown that the existence of the energy integral is

gufficient to define all long-period terms that arise to order 62-

In order to avoid excessive algebraic manipulations, some of the coefficients
in the present solution are not evaluated literally. These coefficients

occur in expressions where the general form is known and they may be expressed
either as definite integrals or as the solutions of systems of linear algebraic
equations., As these coefficients are constant for any given motion, one need

only evaluate them numerically once for each set of initial conditions.

*
Brieflyﬁ this is due to the fact that the long-period behavior °f+i term of
order ¢ is governed by boundedness criteria on terms of order e




2. DISCUSSION

2.1 The Differential Equation for the Time

Struble (1960) gives the following general result for the rate of change of ¢

for a problem with an arbitrary cylindrically symmetric potential.

a¢ _ pu2 + cos3i cos 8 v
dt  cos i 2 20 (2.1)

p sin"i sin ©

After substituting for 6 and -g% from (3.5h*) and (3.2%) and some manipulation

one obtains

. S, 9
% = ____cos21 - g[2 cog 2 sin2¢] + :2[h co; i sinh¢ + 28 % cossi sinai sinh¢
pu pTu o p

- 12 % cossi sin2¢] + 0(53)

P

(2.2)

Upon substitution of the expansions for i and u into the right hand side,

(2.2) reduces to

. 5
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cos”i cu

+ L sinh¢ + 28 — cossi sinei sinh¢
5 3 o o
P P
cu
- 12 —-% cossio sin2¢] + 0(53) (2.3)
Y

All terms of the order unity and € on the right hand side of (2,3) are given in
the original reference of the authors. However, as mentioned previously, a
solution for t to order e must also include consideration of the long-period
terms proportional to 52 in (2.3). This necessitates the evaluation of 12 and
u, occurring to order 52 in (2.3). The lengthy expressions for these two
quantities which had not been computed earlier are shown in Appendix 1. 1In
addition, the leading term of (2.3), viz. cos i / puoz, contains the unknown
terns 102 and e, to order 52. As was pointed out in the original reference

the determination of these terms requires the knowledge of the differential
equations for i and e correct to order 53. It will be shown in the next section

that for the present case, one can deduce the form in which these terms occur by

using the energy integral.

2.2 Use of the Energy Integral to Compute Long-Period Terms

The energy integral

142 1 2 4y,2 2 4+ 1,2 88,2 .
> (dt) +3r (dt) sin“8 + = r (dt) U=E (2.4)

can be brought to the following exact form in terms of the present variables




2
b at.2 _ ,4u,2 ) 2_3 . 2, 2
u (E;' (ajﬁ [2E + u(2 =7 u) + 3 € (1 = 3 sin“i sin“¢)

+ ezcu5 {14 sinhi sinho - 12 sin21 sin2¢ + gi-l (2.5)

Here, E is the energy constant expressible in terms of the initial comditions,
and the potential U, given by (3.2%), has been used. It is clear that
knowledge of the orbit (i.e., u{é,e), i(¢,e)) together with dt/d¢e, as given

by (2.3) to any order e” should lead to an identity to 0(e") when these values
are substituted into (2.5). Thus, one could use {2.5) to check the solution to
any order. In the present case however, a converse use of the energy integral
will be invoked. The orbit defined by u and i is known to 0(52) and it will

be assumed that these results are free of algebraic errors. The energy integral
will then be used to define those terms of dt/d¢ which are unknown to the

order the calculations have been carried out. A partial check of the accuracy
of the results used for u and i will be the cancellation of all known terms

after substitution into (2.5) leaving only a definition of the unknown long-

period terms one seeks.

As was pointed out earlier, the long period terms of order 52 in the leading
term of (2.3) are unknown. To evaluate these, cosi, / pun2 is expanded in its

Fourier series as shown below

cos 10 - p3 1 2 T v 1 - e2 - l)k

= [ + 2
pu°2 c033i° (1 - e? 3/2 (1 + e2)3/2 k=1

(2+%x/1-e?) cos k (¢ - w)] (2.6)




The terms under the summation sign in the above have a short period and hence
need not be evaluated to 0(62). Conversely, it is necessary to compute the

3 2 3/2 correct to 0(52) since this term

form of the first term, p3/cos io (1 -
depends only on $ (or E). It will be shown in what follows that substitution
of all known terms into the energy integral leads to precisely the expression

for the above term.

When dt/d¢ is eliminated from (2.5) by using (2.2) one obtains

2 6. 10,
2
(%%Qa = {EE%.E - e{lku Eiﬁ—i sin2¢] + 22[l2u Egig—l sinh¢

3 3
+ 56¢ BE cos6i sinei sinh¢ = 2he EF cos6i sin2¢]
P P

2

2
+ 0(53)}'{2E +u(2 @ =B y) + ¢ 23 (1 -3 sinei sin2¢)
cos i 3

+ ezcu5 (14 sinhi sinh¢ - 12 sinei sin2¢ + %0} (2.7)
After substituting the expansions for the variables on the right hand side of

(2.7) in the form assumed in the original reference one obtains after scme

manipulation and ordering

2, 2
cos i cos 1 u_ 2 du. du Ju_ Ju
o] [e) ] 1 (o] [} [¢]
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P
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cos i
o
cosGio 3 > 4 c056i° 3 2
+ 56¢ -;?T_- u sin i sin ¢ = 2he -_;?T- u,~ sin ¢]
cossi
L

- §--;FT—J2 u, sin2¢ (L-3 sinzio sin2¢)

coszi

5 (o]
] 2
P

(3'- 12 sinzio sin2¢ 4+ 1) sinhio sinh¢)} = 0(:3)

(2.8)

In the above the known expressions for Ugs Yy Uss il’ and 12 have not yet
been used. If these results are now substituted into (2.8), all short-period
terms cancel identically as expected, and vhat remains is the following

expression for the long-period term under consideration.




2y cos6i
cos i 2) _

=« 2E + c-;g-‘-’- [(-:-3L- + e2)(1 -3 coseio)

—— (] - e

2
p

2
+ %— (1 + cosaio) cos 2w]

+ ez[no +n,cos 2w + n) cos hu) + o(e3) (2.9)

Actually, what is needed is the negative three-halves power of (2.9) correct to

0(52). This can be easily computed once the quantities denoted by N " and

2'
ny, have been defined.

Before discussing the evaluation of ﬂo, 02, and "h’ it is pointed out that in

the term of order € in (2.9), e and io have not been expanded because the higher
order terms in these expansions are no longer negligible. In contrast, for

the evaluation of (3,15*%) and (3.20%) e and i, or (e* and io*) were replaced

by e * and i’ * since the solution was valid only to 0(e) there. However,

one need only use e, and ioo for the values of e and io occurring in the term

proportional to eZin (2.9).

Thus U nl, and ", formally depend on the initial values e, and ioo' The
form of the term of 0(22) in (2.,9) can be deduced by inspection of the terms

of 0(52) in (2.8). Each of these may be expressed as the following double

sum

8 2
2 ) a . cos[n(¢ - w) + 2kw]
n=0 k=2

where the 8k are functions of eo and ioo'




Now the identity (2.8) must be independent of ¢ to any order in €, In
particular, to 0(:2) all the contributions L cos[n(¢ - w) + 2xw] must cancel

vhen n # 0 leaving only terms which can be brought to the form shown in (2.9).

Unfortunately, the explicit evaluation of No? Ny and ny, in terms of ioo and

eo requires extremely involved algebraic calculations. Furthermore, since

the energy integral has already been used in arriving to this stage there is no
independent procedure for checking the results if one were to actually derive

explicit formulae for Mo M and N)e

2’
Thereiore, the following direct scheme for computing the numerical value of
these functions for any set of iAitial conditions is proposed. Let Ea(w),
defined in Appendix 2, denote the lengthy expression for the terms of order

¢ in (2.8). Even though the form shown in the Appendix contains ¢ explicitly,
it was pointed out that upon simplification the terms depending upon ¢ must
cancel identically. Thus, strictly speaking, E2 is a function of w and the two
initial values e, and ioo' Furthermore, it is relatively straightforward to

show that upon simplification E2 will reduce to the following form

no(eo. ioo) + na(eo. ioo) cos 2w + nh(eo, ioo) cos bw = Ee(w, e ioo)

(2.10)

The next step consisting of exhibiting the explicit dependence of the ny upon
the initial values e, and ioo’ is very arduous. The problem of predicting

the numerical value of the ni for any given pair e, and ioo’ is however quite
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simple. For any value of w and a given pair ey and ioo' (2.10) is a linear
algebraic equation for the three ni. The numerical value of the right hané

side can be computed from the definition of E_ in Appendix 2 while the left

2

hand side contains two coefficients which depend on w. Thus, if three distinct

values of w are chosen, (2.10) produces three linear equations for the e

One may, for instance, choose to evaluate E, at w = 0, %, and %3 to simplify

2

the left-hand side of (2.10). Moreover, since E_. does not depend on ¢ in its

2
final form, a choice of ¢ which results in considerable simplification of the

numerical work of evaluating the right hand side of (2.10) is ¢ = 0.

Thus, a pogsible set of equations that results are

no + n2 + ﬂh = EZ(O) (a)
"o -y = Ez(l’%) (2.11) (v)
No T Mp * M = Epl3 ()

The solution of the above system gives

ng = Il; [E2(0) + 2E2(1'{-) + E2(1'2-)] (a)

It is allowable to choose arbitrary values for w since (2.10) is an
algebraic identity even though the range of w, as predicted by the solution,
is restricted for the case of critical inclination,




- % x
n, = 5 [E,(0) - Ex(3)) (2.12) ()
n, = i— [E,(0) = 2E,(]) + E,(})] (c)

Equation (2.9) can now be used to express the leading term of the Fourier

series for cos :i.o / puo2 in terms of known quantities in the form:

3 cos 1
D - -3/2 -5/2 (o} }- 2 _ 2
cosai (1 - e2)3;2 = (- 2= ’% (- 28) pg [(3 + 7)1 - 3cos j'«.'a)
[o]

2
e 2
+ T (1 + cos io) cos 2w]

+ €2 {+ % (- 2E)-5/2[n° + n, cos 2w + n cos |

2

:

+ e2)2(1 -3 coszi )2
3 ]

2

K
5 io - 3 cos io) cos 2w

2
+ S (%*- ez)(l - 2 cos

+ 211 (1 + cos2i )2(1 + cos bw)} (2.13)
32 cos ° S .

2.3 The First Order Term

With the results of the previous section and use of the known solutions for

“o' u,, and il’ the term of order € in the differential equation for the time

becomes

n
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€ cos i 2
(1), Til) - ) s 1+ %— —(b + 3¢%) cos2i°
s pll + e cos(¢ - w)]

+ (= %-+ % coseio)e2 cos 2w = 2e cosai° cos{¢ - w)
- f; (3=-7 coszio) cos(¢ +w) + [- % (1-ed)

+ T cos®i ] 2 e2(1 6 cos®1 ) cos(
g cos i ] cos ¢-r - 6 cos °cost:--i?m)

1 2 e2 2
+ 5 e cos io cos(3¢ = w) + = cos io cos(kd - 2w)}

12
3 5/2 °°séio 1. 2 2
+ 5 e(- 2E)7 —1'3——[(-3-+e )(1 - 3 cos®1 )
e2 2
+ {1 + cos io) cos 2uw] (2.14)

(1)

s and T(i) has been introduced to denote the fact that the

The notation T
right hand side of (2.1l) consists of two parts. One is purely periodic in ¢

and is denoted by T(l) wvhile the remainder, expressed as T(i), depends only on

s
; {or E). The terms comprising Til) are functions of e, io, and w, and will

be studied separately because they give rise to either secular or long=-period
terms (dropping in order by one power of e, after integration in the time
solution)., In order to effect the separation of the short-period terms,

the Fourier expansion of [1 + e cos(¢ = w)]-3, given in Appendix 3, is used.

(1)

It can then be shown that T 2 becomes




2
2
3 (e, io’ w) = > b3°[1 + %— - {4 + 3e2) cos i
e2 2
-5 (2-5cos i) cos 2u]

- b3l[2e cosai° + %-(3 -7 cosaio) cos 2w]

2
+ b32[- %— {(1L-6 cosaio) - %-(1 - e2 -7 coseio) cos 2w]

+
M T

2 1 2 2
b33 e cos io cos 2w + 15 b3h e cos 10 cos 2ml

’ cos i
+3 (- 2072 2 (& + A - 307 )
P

2
+ %r (1 + coszio) cos 2w] (2.15)

(1)
L

in (2.3) one must evaluate it correct to O(e) in order to insure the validity
2
).

Note that since T comprises the long-period terms and is multiplied by €

of the differential equation for the time correct to O(e This can be
achieved for the case of critical inclination by substituting the known

expansions for e and io (cf. (3.28b%), (3.35%), (3.37*) and (3.28a*), (3.33%),

(1)

(3.36%)) giving the following formal representation of T .

Til)(e s io, w)

Til).(eo*, 1% ws €)

- mll)*
= Tzo cos 2mc

1)+ p
(eo*, ioo" €) + Tﬁl) (eo*, ioo.’ €) /, Ko = Ky

13
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(L, . = 2
+ le (e° . 100*, e)(/lxo - cos 2wc)

1

+ Tig)*(eo*, ioo*’ e)(V/E; - K, cos 2wc)3

+ Tgt)*(eon, i oY e)(//;; - k, cos 2wc)h (2.16)

(1)%

g +1=0,1,..kisa

Again, the explicit evaluation of the coefficients T
formidable task, However, a numerical procedure identical to the one proposed

in section 2.2 can be used.

(1)

This consists of numerically evaluating Tl for any given pair of initial
values e° and ioo for five different and consistent (cf. what follows) values

of cos 2w, say cos 2w£v), V =0, 1, «sobt,

(v)

Clearly, the values of W,

must be consistent with the permissible range
given by the solution near the critical inclination, since now the explicit
form of (2.19) depends on whether or not ioo is near the critical value, It

was shown in (3.51%) and in(3,52%) that near the critical inclination wgv) must

obey the inequality

K. = K
sinzwgv) > L B 2 (2.17)
1l

(v)

and possible choices of w, ' are




(v) L cos™a - o 1 -2 1 — ]
¢ 2 ¥ +x. +/ % =« 4 (Vv +«x +¥:-<)2
o 1 ) 1 o 1 ) 1
if k>« (2.18)
or
(V) 1 e lie . 220 T ~
w, = =7 cos [‘1 -V (‘1 +1)] ir <) <K, 8K (2.19)

When each of the above values of uﬁ“) is substituted into the right hand side of
*
(2.15) one obtains a value for the corresponding Til) vhich can then be used in

conjunction with (2.16) to derive a set of five linear algebraic equations for

*
the five unknown Til) - The results of such a calculation are summarized in
i
Appendix 4,
*
If ioo is not critical the form of Til) is simplified to
1 1
Ti ) (e, io’ w) = Ti ) (eo. ioo’ w, €)

12 (eo, ioo' €) cos 2w

+ Tii) (eo, S e) cos o (2.20,

In this case there are only three unknown functions: Tgi), TE;), and Tii).

Since w undergoes a secular variation in this case one may use the following -
three equally spaced values of w = O, fa %‘to obtain the following system of

three linear algebraic equations.

15




1), (1) _ (1) ’
Ti?* TJ(?.2 *Th =Ty (egs 1550 0y €)

AR R S ORISR N
Tgi)_ Tgé) + T](Li) = Til) (eo, iOO' -12'-’ e) (2.21)

The solution of (2.21) gives

Tii) = %'[Tgl) (eo’ ioo’ 0, ) + 2T£l)(eo’ ioo’ ﬁ“ e) + Til) (eo’ ioo’ %’ e)]

Tii) = % [Til) (eo’ ioo' 0, €) = Til) (eo’ ioo’ %’ e)]

Tii) = % [Til) (eys 1,05 0y €) = 2T£l) (egs 1 s %, €) + Til)(eo’ i

co? %’ el

(2.22)

With the definition given in Appendix 6 for the short-period terms to 0(e),
the results are in a form suitable for quadrature., This will be discussed in

Section 2.5 after the terms of 0(52) have also been calculated,

2.4 The Second Order Term

For abbreviation, the whole expression to order €2 of {2.3) plus the

terms of order €2 of the right side of (2,12), are denoted by T(z)(ioo’ e s Wy ¢),

16




(cf. Appendix 5). When the solutions for e Ug, Uy io’ i,, i, are substituted

and only the leading terms e, ioo are kept, one may express T(2) as a Fourier

series in the form
2)
T(

(ioo’ e s W, ¢) = -'T(Q)(loo, ey w) + mzl T(2)(1 o? S0 w)cos m(¢ - w)

(2.23)

Only the first term, “T(z)(l o? eo, w), is of interest because this is the
only term that contributes to order € in the solution for the time t. From

inspection of the expression for T( ), it can be shown that T(Z)(loo’ e s w)

is of the form

(2)(1 5% Su) = T(2)(i° . eo) + ng)(ioo, e ) cos 2w + T(2)(1 00? eo) cos hw
(2.24)
The coefficients T(z) gg), and Tii) can be evaluated by substitution of three

different valuegs for w in ng)(w). The procedure is analogous to the one used
for equations (2.10) and (2.11) and the solution is
(2)
Too (i

=1 n(2) 2),, 2),,
oo’ eo) = K'[To (ioo' €0t 0) + 2 Tg (‘oo’ €o? EQ * Tg )(loo' €o? %ﬁl

Tc(é)(ioo’ eo) = %'[T£2)(ioo’ €a? 0) - ng)(i * €50 2)]

17




(2),. _1 (2},
Toy (loo’ eo) N [To (loo’ e

o! 0) -2 Tf)z)(ioo’ €o? %) * Tgakjbo’ €o?

(o]

(2.25)
vhere
+n
12 e, w =k T e, 6, 0 a0 (2.26)

The definite integral of (2.26) has to be evaluated numerically for w = O,

% and %3 with the e and ioo given by the initial conditionms.

2.5 Integration of the Time Equation

Using the results of the previous sections equation (2.3) may now be written

in the following form:

3 oo
at _ (- 2E)-3/2 * -——11—1; ) b, oS k(¢ - w)

do cos”1i k=1
o
(1)* (1)* = 1/2 (1)* —
+ E[Tlo + Tll [Ko - x, cos 2mc] + Tp) (x o = Ky cos 2wc)

(1)*

(% do
L3 o]

+ 7 - x, cos 20»(2]3/2 + Tii)*(E; - K. cos 2wc)2 + T ]

1

cos 2w+ T(ﬁ)
c

(2) {2)
2 o)

+ e2 [Too + To 5/2) (2.27)

cos hmc] + 0(e

il
5]

18




where %% stands for all the short period terms arising from the expression in (2.3)

to order €. This equation holds for all inclinations., For inclinations away

from the critical,the following somewhat simpler form results

at - (- 28)” -3/2, -—L— 2 b, con k(¢ - w) + c[T(‘U + T(l) cos 2w + T‘ ) cos hw]
as cosd1 kel 2% 22 24

+ %% [T(a) + T( 2) cos 2w + T(ﬁ) cos hw] + 0(63) (2.28)

and is applicable to most cases.

Integration of (2.28) yields

T(l) (1)
¢ = (- 2)7 /3 4 2 22 sin2u+rsh sinluo"'—"P?—Z -—-smk(o-m)
o cos i k=1
(2) o(2) 3
T Sp © b
(1), , L o2 Ton o 2k
+ e[T S o= s8in 2w + sin Lo + ) = sin k(¢ - w)
*2% F 5o cos31° k=1 F

+ 0(¢, w)]+ ezTgi) e+t (2.29)

vhere o is given in Appendix 6 and to is a constant to be determined by the

initial conditions. Integration of the general equation yields the more

complicated expression

w

c
e=1/2 o4 (l) (w, = w) + e~1/2 / ('.Eo - x, cos 2¢)

1/2[T(1)

t = (_ ZE)-3/2¢ +

+ ol K, = K, cos 2¢ + T(l) (k, - x; cos 2¢)]ag
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(2) (2)
3 o b w T cos 2 + T cos bg
e § Bl Jo e T
cos io k=1 w (Ko - Ky cos 2¢)
#*
+ e[Tﬁi) ¢ + 0] + e? ng) .« ¢+ t: (2.30)

*
where to is the integration constant, to be determined by the initial conditions.

The extremely slow motion of the apse in case of critical inclination is
responsible for the occurrence of the large terms of order 6-1/2 appearing in
(2.30). However, it should be noted that these terms, although multiplied by
8-1/2, are of order ¢ for ¢ = 0(1) and grow to order 5-1/2 only when

(wc - w) = 0(1) which is equivalent to ¢ = 0(6-3/2). The evaluation of the
integrals occurring in (2.30) leads to elliptic functions and will not be

exhibited here,




1.

REFERENCES

Eckstein, M., Y. Shi, and J. Kevorkian, Satellite Motion for All
Inclinations Around an Oblate Planet, Douglas Paper No, 3078,

dated August 1933; also to be published in the Proceedings of
International Astronomical Union Symposium No. 25, August 1964,

Struble, R. A., Journal of Mathematical Analysis and Application,
Vol. 1, No. 3 & &, p. 300, 1960.

s Journal of Mathematics and Mechanics, Vol. 10,

p. 691, 1962.

21



————

AYPENDIX 1

GG{

];— (19 - 21 cos’ 1 ) cos(¢ ~ w)

2
e,

e
-2 - l+9c0521 6 (l+r)(l-7c051 )] cos(é + )

3
+ ;—9 c(1-7 cos2i°o) cos(¢ - 3w) + '1—2 eg c sinzioo cos(¢ + 3uw)
82
- % [1 + —g— + 2c (1 + % ei)-(l + % e°2)(l + lhc)coszioo]cos 2¢
2

e
2, [) 2. 2,
(2 - cos 100) cos(2¢ = 2w) - 3 [5~Tcos 1°°-h2c sin 1oo]c05(2¢+2w)

Plo

2
e,

e
- 5% (1 +7 cosalo + 18c (1 + —5-)(1 -7 cos 1 )] cos(3¢ - w)

2
e
--2%[9—16c0521° -h2c(l+—r) 51n1 ]cos (3¢ + w)

—é [10 (1 + %— e°2) - (19 + ?-1 e, 2) coszioo— b2c(1 + %eoz)sin2ioo]cos he

2
e

+ 9%— {1 -1s c092i°° «1Bec{l1-7 coszioo)] cos (he = 2w)

2
e e
- ]% {71 -15 coszio - _2%2_ c (1 + —E—)sinaioclcos(sq; - w)

3
e
o 2.
R T (1 -7 cos 1°)cos(5¢ - 3uw)

23



24

2
e

- 58_8 (7 - 17 coszioo - 126 ¢ sin? io] cos(6e - 2u)

e 3

+ % c sin2i°° cos (7¢ = 3w)}

10
cos

oo 5 287 _ 2 2 .3 4 5,21 2
ool -5, the(1+3e tFe ) v (- g e
45 81 _2 189 2 17 _ 1039 _ 2, 105
Tc-zceo-32ce ) cos“i o+ ( - 355 e, +—8—c

+ [(%eo -3c e°2 --]2‘-c eoh) + (--l-%g-eoz + 30 ¢ e02 +6c eoh) cos2ioo

N "
ce «Tc¢ e, ) cos 100] cos 2w

+ 1—;—8- c eou sinzioo (1L -5 coseioo) cos kLu
+[+%~+%—c-ﬁe°2+2ce +I§-ceh+(6-20+‘:‘g’e°2
-20ce°2-%ceoh) coszi°°+(-lg+lc-%e02+2lce°2

+ % c eoh) cos]‘ioo)] cos 2¢

+[-S%-eo2_%ce02— 6 ° % +(-%2e +18ce2+%ceoh)coszi00




7 1 L 11 2 L 2,
5% ~€°% ~“32°% +(-Ege° +Tgceo)cos i

(- % ec‘2 + -:% c em2 - -;;— c eoh) coshioo] cos (2¢ + 2w)

-3—;- c eoh[l - 24 coszio + 35 coshioo] cos {2¢ + Luw)
e 3
13 9 o .31 3 23 13 25 3
[288 e°+16c S tIBtei % (E:eo- 2 ¢ eo+'r8-eo

Lo 3 2, L33 11 85 3
§C e ) cosd +('2888+'—1%°e 128 %

L6 3 k 1 2 3
—g%c eo)cos ioo] cos (3¢-m)+[§%eo-1€c e°+§§%e°

3 3 T 51 3,35 3 _ 2
Egceo +(-F%e°+fgceo—192e° +32ceo)c°5100

(+—o_+ﬂe3_-gjh-c )COSJ. ]COS(3¢+U~’)

13 3 I3 .3,99 .. 3) coc?s
[ €0 = 3% cey * (- 192 eo *3 e,/ cos i,

o7~ Bhe o) sontsg) con (0= 300+ 1o ghe s o

2 4 1,1 7 L 2.
10 ¢ % "3}"% *eZ+pc-1€% *T°8 ~T6 ¢S ) cosi,

1_1_,23,2_21__2__63
(8-mc+320-20ce 320ce)c051 ] cos b¢




+

+

+

+

+

o . 11 2 1 4
-3 *%5°% *35°% *
11 2 . 217 2. 2L
(-=ge, *To°% Y35 ° %

1 L 2,
350 ¢ % [~ 3 + 90 cos i,
£ 1
(56 ¢ - 30 % * To2
2. 3.2 (B, .8
56 G8, JeosT i+ (T5 e - 55
e 3
0 21 3 23 3
-5+ 350 ¢ %% * (10T %

(=

(- -%_ te e°2) coszj'oo M (96

43

128 %o 320

e

2

(+ e ~Tce, - S c e 1‘) coszi
[] bl 5 ° 0o

) coshiool cos (Lh¢ - 2w)

+ 175 cos 1 ] cos (Lo - buw)

7.3 bo 3 67 .91 _ 23 _3
o - Tg% cey (- 0% % ¥ 80 %% 96 %o

Lo 3 _u9

ce, * 192 %o = T60 ¢ eo3)coshioo]cos (5¢ = w)

3 2.
-fo ¢ % ) cos i,

2
e

e 3. 281 ce 3) coshi ] cos (5¢ = 3w) + [—2— -2 2
o] 0o 32

80 ¢ %o

I%% c eoh) coshioo] cos (6¢ - 2w) + 5%3 c eo)4 (1 - 24 cosei°o

Yy,
35 cos 1oo

21

e 3) coszi + (
o 0o

“ 128 ¢

e 4 sinzi
o

] cos (6¢-hm)+[+-2-%g--1—2%ce

13
256 %

2
o (1L -5 cos ioo

3
c 3, (o b3, 3

o t\-1152 %

3.3Lc e 3) cos i ] cos (7¢ - 3w)

128

) cos (84 - hu)}




E2(¢’ w) =

APPENDIX 2

2 { (aul)z o aul 3u° ) (3u°)2 . au2 3u° . aul auo
2, T 3¢ .~ < 3¢ 3¢ L
cos 100 3¢ 3¢ 3d
sin 2i°° cos 2i 5 sin 2:'.00
-2 > (E + uc’)z.2 -2 > (E + 110)1l -2 > u i,
P P P
coszioo 2 cosS:i.c'o >
+ 2 (—p?— - 1.zo)u2 -yt 48 T sin i iju (E + uo) sin“¢
czassio° 2 <:os3ioo 3 2
-8 - — (E + 2uc‘)u.l sin"¢ - 16 > sin 1 i,u "sin%g
b P
coshioo 2 sin 2ioo 3 sin hio 3 >
+ 12 S uo ul sin ¢ - 33 v, - > 1111o sin™¢
P b P
coszi 2 o 2
+ 2 > u, ul(l - 3 sin ioo sin“¢) -
P
coslzi
2
+ 12 ) s <202uo2 sin (¢ - w) sinh¢
P
cos8i
+ 56 ¢ 7—"-9 sineioo e°2u°3 sin2(¢ -w) sinhq»
Y
8
cos 1
- 24 ¢ __To_o_ eo2u°3 sin2(¢ -w) sin2¢
p
6
cos i
- %—% uch (sin2¢ -3 sinzioo sinhQ)
p
cos2i cosgi
o0 5 . b . b oo 5 ., 2, . 2
+ 1k ¢ 5 Uy  sin'i  sin'¢ - 12 ¢ 5 u ” sin"i_ sin®¢
D Y
6 [ 03:3 io S
* 5 ¢ 2 ™




00 . . . 1 2 2.
- g i) sin 21 [(3 +e (1 - 3 cos 100)

e
(o} 2,
+ (1 + cos 100) cos 2uw]

12,
cos” i
b 10
p

2 1 2 2.
uy sin“¢ [(3 + e {1 - 3 cos 100)

2
e

[} 2
- (1 + cos ioo) cos 2w]

+

du_ sin 2i

+ 2 3% > C, sin 2u[1 + e, cos (¢ - w)]
p
Ju c052i

2 B, sin 2w cos(¢ = w)}




APPENDIX 3

Fourier Expansion of the Function
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